Examples - pi.science.regression.PIExponentialModifiedRegression
1. How to compute exponential modified regression for X and Y values ?
/* change decimal places count in formulas */ PIConfiguration.REGRESSION_DECIMAL_PLACES = 6; /* - prepare X data for exponential modified regression */ PIVariable X = new PIVariable(); X.addValues( new int[] { 1, 2, 3, 4, 5, 6, 7, 8, 9 } ); /* - prepare Y data for exponential modified regression */ PIVariable Y = new PIVariable(); Y.addValues( new double[] { 57.2, 62.8, 72.2, 81.5, 91.6, 97.1, 99.9, 100.4, 100.6 } ); /* - create and compute regression */ PIExponentialModifiedRegression regression = new PIExponentialModifiedRegression( X, Y ); regression.Calc(); Console.WriteLine( regression.GetTextFormula() ); Console.WriteLine( regression.GetTextFormulaFilled() ); /* - calc prediction for X = 5 */ PIDebug.Blank(); System.out.println( "Prediction for X=5 : " + regression.CalcPredictedY( 5.0 ) ); PIDebug.Blank(); Console.WriteLine( "Prediction errors:" ); Console.WriteLine( regression.getErrors().asString( 5 ) );
Output:
y = gama + A * B^x y = 106.941931 - 77.322073 * 0.732849^x Prediction for X=5 : 90.59725012409352 Prediction errors: 6.92348;-2.61473;-4.30876;-3.13900;1.00275;2.13625;1.73627;-0.10883;-1.62744